Koshliakov kernel and identities involving the Riemann zeta function
نویسندگان
چکیده
منابع مشابه
Some Identities for the Riemann Zeta-function
Several identities for the Riemann zeta-function ζ(s) are proved. For example, if s = σ + it and σ > 0, then ∞ −∞ (1 − 2 1−s)ζ(s) s 2 dt = π σ (1 − 2 1−2σ)ζ(2σ). Let as usual ζ(s) = ∞ n=1 n −s (ℜe s > 1) denote the Riemann zeta-function. The motivation for this note is the quest to evaluate explicitly integrals of |ζ(1 2 + it)| 2k , k ∈ N, weighted by suitable functions. In particular, the prob...
متن کاملIdentities for the Riemann Zeta Function
In this paper, we obtain several expansions for ζ(s) involving a sequence of polynomials in s, denoted by αk(s). These polynomials can be regarded as a generalization of Stirling numbers of the first kind and our identities extend some series expansions for the zeta function that are known for integer values of s. The expansions also give a different approach to the analytic continuation of the...
متن کاملSome Identities for the Riemann Zeta-function Ii
Several identities for the Riemann zeta-function ζ(s) are proved. For example, if φ1(x) := {x} = x− [x], φn(x) := ∫ ∞ 0 {u}φn−1 ( x u ) du u (n ≥ 2), then ζn(s) (−s) = ∫ ∞ 0 φn(x)x −1−s dx (s = σ + it, 0 < σ < 1) and 1 2π ∫ ∞ −∞ |ζ(σ + it)| (σ + t) dt = ∫ ∞ 0 φ n (x)x dx (0 < σ < 1). Let as usual ζ(s) = ∑ ∞ n=1 n −s (Re s > 1) denote the Riemann zeta-function. This note is the continuation of t...
متن کاملThe Riemann Zeta - Function and the Sine Kernel
Abstract. We point out an interesting occurrence of the sine kernel in connection with the shifted moments of the Riemann zeta-function along the critical line. We establish this occurrence rigorously for the shifted second moment and, under some constraints on the shifts, for the shifted fourth moment. Our proofs of these results closely follow the classical proofs for the non-shifted moments ...
متن کاملq-Riemann zeta function
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2016
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2015.11.007